Catalase protects cardiomyocyte function in models of type 1 and type 2 diabetes.
نویسندگان
چکیده
Many diabetic patients suffer from a cardiomyopathy that cannot be explained by poor coronary perfusion. Reactive oxygen species (ROS) have been proposed to contribute to this cardiomyopathy. Consistent with this we found evidence for induction of the antioxidant genes for catalase in diabetic OVE26 hearts. To determine whether increased antioxidant protection could reduce diabetic cardiomyopathy, we assessed cardiac morphology and contractility, Ca(2+) handling, malondialdehyde (MDA)-modified proteins, and ROS levels in individual cardiomyocytes isolated from control hearts, OVE26 diabetic hearts, and diabetic hearts overexpressing the antioxidant protein catalase. Diabetic hearts showed damaged mitochondria and myofibrils, reduced myocyte contractility, slowed intracellular Ca(2+) decay, and increased MDA-modified proteins compared with control myocytes. Overexpressing catalase preserved normal cardiac morphology, prevented the contractile defects, and reduced MDA protein modification but did not reverse the slowed Ca(2+) decay induced by diabetes. Additionally, high glucose promoted significantly increased generation of ROS in diabetic cardiomyocytes. Chronic overexpression of catalase or acute in vitro treatment with rotenone, an inhibitor of mitochondrial complex I, or thenoyltrifluoroacetone, an inhibitor of mitochondrial complex II, eliminated excess ROS production in diabetic cardiomyocytes. The structural damage to diabetic mitochondria and the efficacy of mitochondrial inhibitors in reducing ROS suggest that mitochondria are a source of oxidative damage in diabetic cardiomyocytes. We also found that catalase overexpression protected cardiomyocyte contractility in the agouti model of type 2 diabetes. These data show that both type 1 and type 2 diabetes induce damage at the level of individual myocytes, and that this damage occurs through mechanisms utilizing ROS.
منابع مشابه
Cardiac-specific catalase overexpression rescues anthrax lethal toxin-induced cardiac contractile dysfunction: role of oxidative stress and autophagy
BACKGROUND Lethal and edema toxins secreted by Bacillus anthracis during anthrax infection were found to incite serious cardiovascular complications. However, the underlying mechanisms in anthrax lethal toxin-induced cardiac anomalies remain unknown. This study was designed to evaluate the impact of antioxidant enzyme catalase in anthrax lethal toxin-induced cardiomyocyte contractile dysfunctio...
متن کاملCardiomyocyte GTP Cyclohydrolase 1 Protects the Heart Against Diabetic Cardiomyopathy
Diabetic cardiomyopathy increases the risk of heart failure and death. At present, there are no effective approaches to preventing its development in the clinic. Here we report that reduction of cardiac GTP cyclohydrolase 1 (GCH1) degradation by genetic and pharmacological approaches protects the heart against diabetic cardiomyopathy. Diabetic cardiomyopathy was induced in C57BL/6 wild-type mic...
متن کاملMyocardial Adipose Triglyceride Lipase Overexpression Protects Diabetic Mice From the Development of Lipotoxic Cardiomyopathy
Although diabetic cardiomyopathy is associated with enhanced intramyocardial triacylglycerol (TAG) levels, the role of TAG catabolizing enzymes in this process is unclear. Because the TAG hydrolase, adipose triglyceride lipase (ATGL), regulates baseline cardiac metabolism and function, we examined whether alterations in cardiomyocyte ATGL impact cardiac function during uncontrolled type 1 diabe...
متن کاملThe Comparison of Green Tea Aqueous Extract and Catechin Effect on Pituitary-Gonadal Axis in Rat Models of Type 1 Diabetes
Background and Objective: Diabetes causes fertility disorders by interfering with the endocrine gland function. There are reports that, green tea and catechins could have anti-oxidant and hypoglycemic properties. Therefore, in the present study, we evaluated the effects of green tea aqueous extract and catechin influence on pituitary-gonadal axis in rat models of type 1 diabetes. Materials & M...
متن کاملProtective Effect of Rutin and Naringin on Sperm Quality in Streptozotocin (STZ) Induced Type 1 Diabetic Rats
Oxidative stress is one of the important causes of the type 1 diabetes induced changes in the sperm quality. Bioflavonoids, Rutin 10 mg/Kg and Naringin 10 mg/Kg were evaluated for their protective effects on sperm parameters, oxidative stress, and histopathology of type 1 diabetic rats. Results demonstrated the reduction in sperm count, sperm motility and vitality in diabetic rats. Mass drug ad...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Diabetes
دوره 53 5 شماره
صفحات -
تاریخ انتشار 2004